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Abstract Examples of complex-valued random phenomena in science and engi-
neering are abound, and joint blind source separation (JBSS) provides an effective
way to analyze multiset data. Thus there is a need for flexible JBSS algorithms
for efficient data-driven feature extraction in the complex domain. Independent
vector analysis (IVA) is a prominent recent extension of independent component
analysis to multivariate sources, i.e., to perform JBSS, but its effectiveness is de-
termined by how well the source models used match the true latent distributions
and the optimization algorithm employed. The complex multivariate generalized
Gaussian distribution (CMGGD) is a simple, yet effective parameterized family of
distributions that account for full second- and higher-order statistics including non-
circularity, a property that has been often omitted for convenience. In this paper,
we marry IVA and CMGGD to derive, IVA-CMGGD, with a number of numer-
ical optimization implementations including steepest descent, the quasi-Newton
method Broyden-Fletcher-Goldfarb-Shanno (BFGS), and its limited-memory sib-
ling limited-memory BFGS (L-BFGS) all in the complex-domain. We demon-
strate the performance of our algorithm on simulated data as well as a 14-subject
real-world complex-valued functional magnetic resonance imaging (fMRI) dataset
against a number of competing algorithms.
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1 Introduction

The complex-valued domain is the natural home for the processing of signals for
various problems such as those in medical imaging, communications, sonar and
radar array processing, and geophysics. Recently, research efforts increasingly focus
on the analysis of multiple datasets jointly to exploit complimentary information
among them. Independent vector analysis (IVA), a recent extension of indepen-
dent component analysis (ICA) to multiple datasets, decomposes each dataset
into a linear combination of statistically-independent factors taking cross-dataset
dependencies into account. It has been successfully applied to a good number of
applications where joint source separation is needed and one has to fully lever-
age the statistical information across multiple datasets, for example, in the joint
analysis of electroencephalographic datasets (Bridwell et al, 2018), functional mag-
netic resonance imaging (fMRI) applications (Lv et al, 2018), and multichannel
audio array processing (Itakura et al, 2018), to name a few. Therefore, flexible
algorithms are needed in the complex domain that are data-driven since, in many
cases, little prior information is known about the nature of these sources. The IVA
algorithm, IVA Gaussian (IVA-G) (Anderson et al, 2012a), on the other hand,
uses the noncircular Gaussian distribution as the latent source model which can
exploit second-order statistics. IVA Laplacian (IVA-L) (Lee et al, 2006), uses an
uncorrelated, circular Laplacian model which better matches the heavy tails of
physiologically-relevant components in fMRI but fails to exploit noncircularity
which has been shown in fMRI sources (Adalı et al, 2011b; Rodriguez et al, 2012).
In (Kuang et al, 2017), the authors develop a noncircular complex-valued multi-
variate IVA algorithm based on the real-valued multivariate generalized Gaussian
distribution (MGGD), which we call adaptive IVA, by explicitly incorporating the
pseudo-covariance matrix in the update rule. However, a number of simplifying
assumptions are made on the data that bias the results: first, the demixing matri-
ces are constrained to be orthogonal which is generally not true (Cardoso, 1998).
Second, for each source, the covariance matrix is estimated using its dominant
eigenvalue only. This is informally justified based on experimental observations in
multiband frequency-domain acoustic data in (Na et al, 2013) but justification for
other sources is unclear.

Since the performance of IVA is intimately tied to the accuracy of the modeling
assumptions made to the underlying latent sources, we target families of distribu-
tions that are simple (i.e., require few parameters to estimate), yet flexible enough
to accommodate a variety of sources. In (Ollila et al, 2012), a broad survey of
complex-valued, elliptically-symmetric distributions is presented, but the simple
generalized Gaussian distribution derived omits noncircularity.

In (Mowakeaa et al, 2016), we develop the complex MGGD (CMGGD) family of
distributions that generalizes the generalized Gaussian distribution in (Ollila et al,
2012) to noncircular random vectors. We develop an estimator for the CMGGD
augmented covariance matrix which incorporates both the classical covariance ma-
trix in addition to the pseudo-covariance matrix within the maximum likelihood
framework. We illustrate the advantage of incorporating all available forms of
statistical diversity—in this discussion, noncircularity, second- and higher-order
statistics—into source distributions through the improved performance in esti-
mating the augmented covariance matrix over a range of shape parameters.
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In this paper, we employ the CMGGD family in the development of IVA
without constraining the demixing matrices to be orthogonal—or unitary in the
complex-valued case. Using the complex augmented form, we present the cost
function and develop IVA-CMGGD in the complex domain. Since the cost func-
tion has no closed-form solution, we use Wirtinger calculus to derive the gradient
and resort to 3 numerical optimization techniques: steepest descent (SD), quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS), and limited-memory BFGS
(L-BFGS), with a step size satisfying the Wolfe conditions (Sorber et al, 2012; No-
cedal and Wright, 2006). The result is 3 new IVA algorithms: IVA-CMGGD-SD,
IVA-CMGGD-BFGS, and IVA-CMGGD-L-BFGS respectively. To demonstrate
the efficacy of our approach, we compare their performance with that of com-
peting algorithms applied to both complex-valued simulated sources as well as a
real-world, 14-subject complex-valued fMRI finger-tapping dataset used in a num-
ber of other studies (Rodriguez et al, 2012, 2011; Li et al, 2011; Xiong et al, 2012).
In exploratory fMRI analysis, little is known about the distributions of the la-
tent sources and the data, as collected, are natively complex-valued (Rodriguez
et al, 2015). The phase of the complex-valued fMRI data is often dropped in favor
of real-valued processing of the magnitude data alone, even though studies have
shown the phase to contain novel physiologically-relevant information (Feng et al,
2009; Rowe, 2005; Arja et al, 2010). The phase images are discarded primarily
because their unfamiliar and noisy nature poses a challenge when studying fMRI
data (Calhoun et al, 2002; Adalı and Calhoun, 2007). Therefore, exploiting the in-
formation contained in the phase promises to increase our ability to identify areas
in the brain with significant susceptibility changes that could not be previously
identified by operating only on the magnitude data. Additionally, it is natural
to assume that dependencies exist in neural behavior in multiple subjects under
similar conditions (Dea et al, 2011). These facts motivate the need for flexible,
data-driven techniques for joint analysis in the complex domain utilizing the full
extent of statistical information available in simple form—an excellent match for
our proposed algorithms.

The rest of the paper is organized as follows: Section 2 presents background
material and the theoretical development of our proposed method. In Section 3,
we introduce the experimental setup for simulated data and the real-world fMRI
dataset and present the results. Section 4 concludes the paper.

2 Theory and Methods

2.1 Complex-Valued RVs

The probability density function (PDF) of a complex-valued random vector (RV)
x = xr + jxi ∈ CK , where xr,xi ∈ RK , is defined as the joint probability density
function of its real and imaginary components:

px(x) := pxr,xi(xr,xi). (1)

The real composite representation xR =
[
x>r ,x

>
i

]>
fully captures the behavior

of a random vector over its domain. The complex augmented form (Schreier and

Scharf, 2010), given by
[
x>,xH

]>
, where (·)H is the Hermitian operator, is an
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equivalent redundant representation related to the real composite form through
an invertible linear transform (Schreier and Scharf, 2010; Adalı et al, 2011b),

x = TKxR ⇔ xR =
1

2
THKx, (2)

where TK =

[
I jI
I −jI

]
∈ C2K×2K is unitary up to a factor1 of 2 and I is the identity

matrix. In this paper, we omit the subscript in TK when it is understood from
the context.

Although redundant, the complex augmented form offers a number of advan-
tages when manipulating complex RVs. For instance, since the PDF of a complex-
valued random vector x is necessarily a real-valued function of its argument (as are
all optimize-able cost functions), Wirtinger, or CR calculus (Schreier and Scharf,
2010; Adalı et al, 2011a; Brandwood, 1983; Wirtinger, 1927; Adalı and Schreier,
2014) can be applied to take derivatives of the PDF with respect to x or x∗ while
keeping the other constant. This avoids the tedious task of differentiating with
respect to each of the real and imaginary components separately. And by main-
taining its complex structure, this approach also retains the intuition of the RVs
in their natural domain.

The complex augmented form also allows for capturing full complex second-
order statistics implicitly. To illustrate this, consider the augmented covariance
matrix of x ∈ CK given by:

C := E
{
x xH

}
= E

{[
xxH xx>

x∗xH x∗x>

]}
, (3)

where (·)∗ is the complex conjugate operator. It is clear that the covariance matrix
of the complex augmented form captures the covariance matrix C = E

{
xxH

}
as

well as the pseudo-covariance matrix P = E
{
xx>

}
of the complex RV. We note

the distinct block pattern of C: the northwest block is the complex conjugate
of the southeast block, and the northeast block is the complex conjugate of the
southwest block. Also, an augmented covariance matrix is Hermitian, and, like its
real-valued analog, positive semi-definite (Haykin, 2014).

Following definitions in (Schreier and Scharf, 2010), we call an random vec-
tor x proper if the pseudo-covariance matrix vanishes and improper otherwise.
To quantify the impropriety of random vector x, the noncircularity coefficients,
defined as the singular values of the coherence matrix2,

R = C−
1/2PC−

H/2, (4)

are computed. Then, the noncircularity coefficients can be combined into a single
metric of impropriety in a number of ways each possessing different attributes. We
opt for the following (Schreier and Scharf, 2010) for degree of impropriety (DOI):

ρ =
1

K

K∑
k=1

λ2k, (5)

1 Unitary up to a factor of 2 implies TTH = THT = 2I.
2 The classical singular value decomposition is sufficient to obtain the noncircularity coef-

ficients. However, if the corresponding canonical projections are needed, a special, complex-
symmetric decomposition called the Takagi factorization (Horn and Johnson, 1990; Schreier
and Scharf, 2010; Moreau and Adalı, 2013) is required to maintain the complex augmented
form.
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where λk is the kth singular value of R. This choice possesses the desirable property
that when ρ = 1, λk = 1, k ∈ {1, . . . ,K}, i.e., each of the marginal variates is
maximally-improper. Similarly, when ρ = 0, λk = 0, k ∈ {1, . . . ,K}, each is
accordingly proper.

2.2 The CMGGD Family

In a number of applications such as fMRI analysis, the components of interest are
highly noncircular (Li et al, 2011), and hence it is desirable to use a multivariate
density model that allows for noncircularity. MGGD, as we noted, provides a de-
sirable balance between complexity and flexibility. It has unimodal marginals that
can model distributions with heavier or lighter tails than the Gaussian distribution
using a single shape parameter thus able to decrease the bias due to PDF mismatch
while allowing for reasonable complexity with a small number of paarmeters. The
circular complex-valued generalized Gaussian distribution is given by (Ollila et al,
2012):

pGG(x) =
βΓ (K)b−

K/β

πKΓ (K/β)

∣∣Σ∣∣−1
exp

{
−1

b

(
xHΣ−1x

)β}
, (6)

where b is a scale parameter and Σ ∈ CK×K is a positive semi-definite matrix pro-
portional to the classical covariance matrix for fixed shape parameter β and b. It is
clear that this definition neglects noncircularity by omitting the pseudo-covariance
matrix. Instead, we introduce the complex augmented form to incorporate the
pseudo-covariance (for details, see (Mowakeaa et al, 2016)):

p(x) =
KΓ (K)ηK2

−K/β

πKΓ
(

1 + K
β

) ∣∣C∣∣−1/2
exp

{
−1

2

(η
2
xHC−1x

)β}
, (7)

where Γ (·) is the gamma function, |·| represents the determinant when its argument
is a matrix, and η is a normalization factor unique to the specific member of the
CMGGD family and is given by:

η =
2

1
β
−1
Γ
(
K+1
β

)
KΓ

(
K
β

) . (8)

It is straightforward to show that if the pseudo-covariance matrix vanishes, the
PDF in (7) is simply the PDF in (6) in augmented form. Hence, CMGGD is a
generalization of the generalized Gaussian distribution to incorporate noncircular-
ity. The flexibility of the CMGGD family of distributions provides an ideal tool
for IVA providing more flexibility which makes it attractive for many real-world
applications.

2.3 Generative Model

IVA, a multiset extension of ICA, can perform decompositions on a number of
datasets jointly by taking into account the dependence between corresponding
sources across datasets (Kim et al, 2006). In real-world applications, the number of
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mixtures often exceed the number of sources to be estimated. Principal component
analysis (PCA) is a common preprocessing step used to reduce the number of
mixtures to match the number of desired components to be estimated (Hyvärinen
et al, 2001; Michael et al, 2014; Lee et al, 2008; Calhoun and Adalı, 2012; Wax
and Kailath, 1985). It also avoids over-fitting by reducing the data to the signal
subspace in noisy applications such as fMRI. The success of this step, however, is
tied to the accuracy with which the enforced model order matches the true order
of the signal subspace. We then write for each dataset

x[k] = A[k]s[k], k ∈ 1, · · · ,K, (9)

where x[k] ∈ CN is the mixture random vector from the kth dataset, A[k] ∈ CN×N
is the kth mixing matrix, and s[k] is the kth latent source RV. We define a source
component vector (SCV) by cascading corresponding estimated sources from each

dataset row-wise: sn =
[
s
[1]
n , . . . , s

[K]
n

]>
. The goal of IVA is to estimate K demixing

matrices that produce source estimates:

y[k] = W[k]x[k], k ∈ 1, · · · ,K, (10)

where W[k] is the estimate of the kth demixing matrix, that are as independent
as possible.

One approach to solving (10) is to minimize the mutual information (MI)
among estimated SCVs. The MI framework is a natural measure of the degree of
statistical independence among SCVs and can incorporate all statistical forms of
diversity. Then, the MI ofN linearly-mixed independent and identically distributed
(IID) complex-valued sources can be defined as (Anderson et al, 2012a):

I (y1; . . . ;yN ) =
N∑
n=1

H (yn)−
K∑
k=1

(
log
∣∣W[k]

∣∣2)−H (X ) , (11)

where I (·) is the MI function, H (·) denotes the (differential) entropy, X =[
x[1]>, . . . ,x[K]>

]>
∈ CNK×1 is the collection of all x[k], and yn ∈ CK is the

estimate of the nth SCV with elements y
[k]
n given by:

y[k]n = w[k]>
n x[k], (12)

where w
[k]
n is defined to be the column vector of elements of the nth row of W[k].

The last term in (11) is constant with respect to W[k] and can be dropped from
the optimization procedure. The mutual information cost function (11) we develop
here does not require the mixtures to be pre-whitened. This approach is used in a
number of other works (Anderson et al, 2012a; Kim et al, 2006; Adalı et al, 2014).
However, pre-whitening the data approximately resolves about half the unknowns
in the demixing matrices (Cardoso, 1998) hence, in practice, it is advantageous to
do so to improve convergence speed.

Minimization of the MI is equivalent to the maximization of the maximum
likelihood cost function (Cardoso, 1998), making available all the theoretical ad-
vantages associated with maximum likelihood theory. As the model deviates from
the true PDF, a bias is introduced in the estimate of the demixing matrix result-
ing into poor estimation performance. This fact emphasizes the need for flexible
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modeling of source distributions in a data-driven fashion. Equally important is
the choice of optimization approaches since the solution to (11) does not exist in
closed form. This is the subject of Sec. 2.4.

2.4 IVA-CMGGD Cost Function and Gradient

By using the MI cost function, the IVA problem can be stated as:

arg min
W

J (W) , (13)

where J (W) is the mutual information-based cost function and W ∈ CN×N×K
is a tensor containing all W[k]. Motivated by its inclusion of noncircularity and
its simple parametric form, we deploy the CMGGD PDF in (7) to the MI cost
function in (11). The resulting cost function becomes:

J (W) =

N∑
n=1

[
κn +

1

2
log (|Cn|) +

1

2
E
{(ηn

2
yH
n
C−1
n y

n

)βn}]
−

K∑
k=1

(
log
∣∣W[k]

∣∣2) ,
(14)

where κn = − log

(
KΓ (K)ηKn

πKΓ
(
1+ K

βn

)
2
K
βn

)
. Since distribution parameters Cn and βn

are estimated from the data, we can drop terms in (14) independent of W[k] to
yield:

J (W) =
1

2

N∑
n=1

E
{(ηn

2
yH
n
C−1
n y

n

)βn}
−

K∑
k=1

(
log
∣∣W[k]

∣∣2) . (15)

It is clear in (15) that both the covariance and pseudo-covariance, hence noncir-
cularity, are exploited in the cost function3. In practice, the limited number of
samples available may limit the performance of IVA—especially as model flexibil-
ity is increased. We expand on this further in Section 3.

Since no closed-form solution to (15) exists, we derive the gradient ∇J (W)

for use in iterative numerical approaches, where [∇J (W)]n,k = ∂J(W)

∂w
[k]∗
n

∈ C1×N .

We use Wirtinger calculus to differentiate J (W) with respect to w
[k]∗
n while con-

sidering w
[k]
n as a constant. Generally, differentiating the log-determinant term

in (15) includes matrix inversion at each iteration which can lead to numerical
error. Therefore, we utilize the decoupling trick (Anderson et al, 2012b; Fu et al,
2015) which permits computing the derivative of the log-determinant term in (15)
row-wise without inversion. Then, the gradient can be written as:

∂J (W)

∂w
[k]∗
n

= E

βnη
βn
n

2βn+1

(
e>k C

−1
n y

n

)
x[k]∗(

yH
n
C−1
n y

n

)(1−βn)
 +

h
[k]∗
n

h
[k]H
n w

[k]∗
n

, (16)

where ek is a unit vector of appropriate length with a value of 1 in the kth posi-

tion, and 0 elsewhere, and hn is any unit-norm vector orthogonal to w
[k]
no , no ∈

{1, . . . , n− 1, n+ 1, . . . , N}.
3 We maintain unit-norm rows of W to prevent driving the cost function lower through

scaling alone.
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2.5 IVA-CMGGD Optimization Procedure

To minimize (15), since no closed-form solution exists, we employ iterative numer-
ical optimization line search methods of the following form:

W←W + µD, (17)

where D ∈ CN×N×K is an appropriate tensor direction that forms an obtuse angle
with the gradient ∇J (W) and µ is a step size that satisfies the Wolfe conditions
to ensure rapid convergence (Nocedal and Wright, 2006; Sorber et al, 2012). In
this context, the obtuse angle is interpreted in a row-wise sense.

Steepest descent (SD), the simplest line search algorithm, uses the unit-direction

D = − ∇J(W)
‖∇J(W)‖ to decrease the cost function locally in the Euclidean space. This

approach is attractive due to its simplicity but might lead to an very slow rate of
convergence even when the Hessian is reasonably well-conditioned (Nocedal and
Wright, 2006).

Newton methods improve on SD for up to quadratic convergence (Nocedal and
Wright, 2006) by taking into account both the gradient as well as the Hessian.
However, where the Hessian is difficult to derive or expensive to compute, quasi-
Newton approaches, such as BFGS, offer super-linear convergence using a positive

definite Hessian estimate. At iteration i, given u = vec
(
W(i+1) −W(i)

)
, where

vec(·) serializes its argument in a vector, and v = vec
(
∇J(i+1) −∇J(i)

)
, we define

the augmented forms u =
[
u>uH

]>
and v =

[
v>vH

]>
. Then, the inverse Hessian

can be updated in augmented form by (Sorber et al, 2012):

H−1 ←
(
I− u vH

vHu

)
H−1

(
I− v uH

vHu

)
+

u uH

vHu
, (18)

under the condition vHu > 0. This condition is guaranteed to hold when the Wolfe
conditions are used to select the step size (Nocedal and Wright, 2006). Then, the
vectorized BFGS direction can be written as:

d = −H−1∇J∗, (19)

where∇J is the augmented form of the vectorized gradient and d is the augmented
form of vec (D).

Still, the cost of storing the Hessian estimate itself may become prohibitive as
the number of sources and the number of datasets increase. Limited-memory BFGS
(L-BFGS) alleviates the need to store the entire Hessian by storing the previous M
gradient estimates which are then used to update the augmented inverse Hessian
implicitly. In this case, the L-BFGS direction is given by Algorithm 1 (Sorber et al,
2012), where <{·} extracts the real component of a complex argument.

After finding a suitable descent direction, a satisfactory step size µ must be
selected in order to assure convergence. Several criteria exist, such as the Wolfe
conditions which are given by (Sorber et al, 2012):

J (W + µD) ≤ J (W) + c1µd
>∇J (W) , and

d>∇J (W + µD) ≥ c2d>∇J (W) ,
(20)
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Algorithm 1 L-BFGS update at iteration i (Sorber et al, 2012)

Require: um, vm, m ∈ {i− 1, i− 2, . . . , i−M}
1: γm ← <

{
vHmum

}−1

2: g← 2 vec
(
∂J(W)
∂W∗

)
3: d← −g
4: for m = i− 1, i− 2, . . . , i−M do
5: αm ← γm<

{
uHmd

}
6: d← d− αmvm
7: d← 1

2
H−1
i−Md

8: for m = i−M, i−M + 1, . . . , i− 1 do
9: β ← γm<

{
vHmd

}
10: d← d + (γm − β)um

return d

where c1 and c2 are constants usually taken to be 10−4 and 0.9 respectively4.
The first condition in (20) is called the sufficient decrease condition and is re-
sponsible for ensuring that the step size selected leads to a substantial decrease in
the cost function while the second condition, known as the curvature condition,
disqualifies step sizes that are too small. Usually, finding a step size that satis-
fies the Wolfe conditions is performed by interpolating the cost function between
iterates until one is found. This typically involves many function and gradient
evaluations at each iteration of the algorithm. To reduce the impact of these com-
putations, we fix a set of step sizes over which the Wolfe conditions are evaluated.
If none of the step sizes satisfy the conditions at a given iteration, we pick the step
size that leads to the largest decrease in the value of the cost function. Conver-
gence of IVA-CMGGD is attained when the magnitude of the gradient falls below
threshold ε1 while the magnitude change in the distribution parameters is below
threshold ε2. To avoid shrinking the cost function through the scaling of W, we

constrain each row w
[k]
n to be unit-norm by projecting each row of W onto the

unit-sphere after each update. In all IVA-CMGGD variants, we estimate the distri-
bution parameters during the optimization procedure every q iterations to ensure
significant progress in decreasing the cost function at the current set of distri-
bution parameters before updating them. Heuristically, we choose q = b

√
N2Kc,

where b·c is the floor function. Algorithm 2 summarizes the IVA-CMGGD proce-
dure where the distribution parameters for the nth SCV are denoted compactly

by Θn =
[
vec (Cn)> vec (Pn)> βn

]>
.

3 Results

In this section, we apply IVA-CMGGD to both mixtures of simulated CMGGD
sources as well as real-world complex-valued fMRI data. We conduct a number
of experiments that highlight the performance advantage of the proposed meth-
ods. In the first set of experiments, we generate synthetic sources over the full
range of the shape parameter β ∈ [0.125, 8], using the CMGGD data genera-
tion method in (Mowakeaa et al, 2016) that allows for noncircular variables, to
demonstrate the full capability of IVA-CMGGD. Then, to better accommodate

4 For the conjugate gradient method, not discussed in this paper, the value of c2 is often
taken to be 0.1 (Nocedal and Wright, 2006).
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Algorithm 2 IVA-CMGGD

Require: X[1], . . . ,X[K] (pre-whitening), W
[1]
0 , . . . ,W

[K]
0 (unit-norm row), ε1 > 0, ε2 > 0

1: Whiten X[k] for all k
2: W←W0

3: Estimate distribution parameters Θn for all n
4: repeat
5: Find tensor descent direction D using SD, BFGS, or L-BFGS
6: Find µ satisfying Wolfe conditions
7: W←W + µD

8: w
[k]
n ← w

[k]
n∥∥∥w[k]
n

∥∥∥ for all n, k

9: if iter (mod q) = 1 then
10: Update distribution parameters Θn for all n

11: if
∑
n,k

∥∥∥∥ ∂J(W)

∂w
[k]∗
n

∥∥∥∥ < ε1 & ‖∆Θn‖ < ε2 then

12: Break
13: until Max iteration
14: Transform W[k] to the domain of pre-whitened X[k] for all k
15: return W

the most prominent competing algorithm, IVA-GL, which uses a Laplacian PDF
model in its second stage following a Gaussian model in its first, we generate
super-Gaussian sources with β ∈ [0.125, 0.5]. We omit IVA-G in this case due to
its model mismatch for clarity. In the next set of experiments, we study perfor-
mance on actual real-world complex-valued fMRI data where sources have been
shown to be mostly super-Gaussian for physiologically-relevant components and
both super- and sub-Gaussian in the case of artifacts (Lee et al, 1999; Calhoun
and Adalı, 2006; Girolami, 1998). This allows us to test the data-driven flexibil-
ity of IVA-CMGGD variants in modeling of the unknown source distributions.
We compare the proposed method IVA-CMGGD, in its three flavors SD, BFGS,
and L-BFGS, against IVA-GL. Adaptive IVA was omitted after failing to produce
competing results even after matching the used tolerance of 10−6 as in (Kuang
et al, 2017) and discarding runs that met a maximum iteration count of 20, 000.
(In comparison, the authors in (Kuang et al, 2017) use a maximum iteration of
1, 000.) This might be due to the sub-optimal estimation of each source covariance
matrix within a 1-dimensional subspace spanned by its dominant eigenvector as
well as the assumption of orthogonality on each demixing matrix (Kuang et al,
2017).

3.1 Simulated CMGGD Sources

In this section, we use simulated data to demonstrate the performance of IVA-
CMGGD. For the following simulated experiments, the covariance matrix for each
SCV is a random symmetric positive-definite matrix C = AHA and the pseudo-
covariance matrix is generated as P = C1/2FΛF>C>/2, where A has elements
drawn from the standard complex Gaussian distribution, F is any unitary matrix
and Λ is the diagonal matrix of noncircularity coefficients (Schreier and Scharf,
2010). Since the ground truth, i.e., both underlying sources and mixing matrices,
are known, we use inter-symbol-interference (ISI) (Moreau and Macchi, 1994) to
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find the average performance over a number of runs and is given by (Anderson
et al, 2012a; Moreau and Macchi, 1994),

ISI(G) =
1

2N(N − 1)

[
N∑
n=1

(
N∑
m=1

∣∣gn,m∣∣
maxp

∣∣gn,p∣∣ − 1

)
+

N∑
m=1

(
N∑
n=1

∣∣gn,m∣∣
maxp

∣∣gp,m∣∣ − 1

)]
,

(21)
where G = WA with elements gn,m. ISI measures the quality of a decomposi-

tion by describing the deviation of G from the identity matrix. For multi-dataset
decompositions, ISI can be generalized to joint ISI (jISI) for IVA as in (Anderson
et al, 2012a):

ISIjoint(G) = ISI(G̃) (22)

where G =
{
G[k]

}K
k=1

is the collection of matrices G[k] and the (i, j)th element of

G̃ is the absolute sum of corresponding elements of G[k] over all k as in:

[
G̃
]
i,j

=

K∑
k=1

∣∣∣[G[k]
]
i,j

∣∣∣ . (23)

Joint ISI in is thus a generalization of ISI to multiple datasets and they are equiv-
alent when K = 1.
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Fig. 1 Joint ISI for decomposing mixtures of N = 3 sources over β ∈ [0.125, 8] and K = 4
datasets with DOI = 0.5. Each point is the average of 300 independent runs

In the first experiment, we generate N = 3 sources with K = 4 datasets over
the full range of the shape parameter β ∈ [0.125, 8] as we vary the number of
samples over the set V ∈ {5, 10, 15, 20, 25} × 1000 samples. Thus, each SCV is
multivariate with dimension 4, i.e., Sn ∈ C4×V . The sources from each dataset
are mixed using matrices A[k] with elements drawn from the uniform distribution
U(0, 1). Fig. 1 shows the results of this experiment averaged over 300 independent
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Fig. 2 Number of iterations required per algorithm for mixtures of N = 3 sources over
β ∈ [0.125, 8] and K = 4 datasets with DOI = 0.5. Each point is the average of 300 independent
runs

runs. The broad parameter shape range naturally favors IVA-CMGGD variants in
this experiment. We also report the number of iterations required for convergence
for each of the IVA-CMGGD variants in Fig. 2. Here, as suspected, the convergence
of IVA-CMGGD-BFGS requires considerably fewer iterations than IVA-CMGGD-
SD, whereas IVA-CMGGD-L-BFGS, with its memory-efficient implementation,
trails closely behind.

In the second experiment, we restrict the shape parameter to the super-Gaussian
range β ∈ [0.125, 0.5]. Fig. 3 shows the results of this experiment averaged over
300 independent runs. It is clear from this figure that while all methods show a
decrease in jISI as the number of samples increases, IVA-CMGGD methods are
better able to model the super-Gaussian sources via their adaptive nonlinearity.
The L-BFGS variant of IVA-CMGGD shows slightly reduced performance versus
its more efficient siblings. This is due to the noisy nature of the descent direction
approximation inherent to this flavor of IVA-CMGGD.

In the third experiment, we fix the number of samples to V = 10, 000 samples
and vary DOI over ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} while keeping other parameters as
before. Fig. 4 shows the result of this experiment averaged over 300 independent
runs. Here, the case for taking full statistical information into account is apparent
as IVA-CMGGD variants outperform IVA-GL. We also note that the worst per-
formance achieved by each algorithm occurs in a neighborhood of ρ = 0.5. As DOI
increases from this point, the correlation between the real and imaginary parts
increases, reducing the effective degrees of freedom of the sources. On the other
hand, as DOI decreases from this point, the pseudo-covariance matrix vanishes, de-
creasing the effective degrees of freedom of the parameter space of each estimated
source PDF along with it. Both limiting cases thus improve overall estimation
performance.
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The increase in run-time associated with the additional complexity of IVA-
CMGGD is on the order of 5–10 times that of IVA-GL for the experiments pre-
sented here due to the increased model complexity and hence computational con-
siderations are one of the factors that might affect the decision to select a more
powerful model for a given problem.

3.2 Complex-Valued fMRI Data

We apply IVA-CMGGD to a complex-valued fMRI dataset used in a number of
studies (Rodriguez et al, 2012, 2011; Li et al, 2011; Xiong et al, 2012). As detailed
in (Rodriguez et al, 2012), the dataset consists of fMRI scans from 14 subjects per-
forming a finger-tapping motor task with alternating periods of 30 s ON (finger
tapping) and 30 s OFF (rest). The experiments were performed on a 3 T Siemens
TRIO TIM system with a 12-channel radio-frequency (RF) coil. The fMRI experi-
ment used a standard Siemens gradient echo planar imaging (EPI) sequence mod-
ified to store real and imaginary data separately. The data were preprocessed to
correct for phase error, motion correction and spatial normalization into standard
Montreal Neurological Institute space using the MATLAB toolbox for statistical
parametric mapping5 (SPM). We perform PCA to reduce the dimensionality of the
data to an order of 30 components estimated by the minimum description length
(MDL) criterion for complex-valued data as in (Rodriguez et al, 2012; Xiong et al,
2008).
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Fig. 3 Joint ISI for decomposing mixtures of N = 3 super-Gaussian sources and K = 4
datasets with DOI = 0.5. Each point is the average of 300 independent runs

Since the ground truth is not available for real-world data, ISI cannot be used
to evaluate the performance of a single run. Instead, we adopt a couple of com-
monly used methods including analysis of average spatial maps and average TC

5 SPM URL: http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Fig. 4 Joint ISI for decomposing mixtures of N = 3 super-Gaussian sources and K = 4
datasets with V = 10, 000 samples. Each point is the average of 300 independent runs

correlation with the task paradigm (Du et al, 2016; Rodriguez et al, 2012). In
(Rodriguez et al, 2012, 2011), the authors develop a visualization technique for
fMRI spatial maps that takes into account both the real and imaginary values of
the estimated components of each complex-valued voxel through the Mahalanobis
distance:

z(v) =

√
(yR − µR)>C−1

R (yR − µR), (24)

where z(v) is the real value assigned to the vth voxel of estimated source component
y, yR is the real composite form of y and µR,CR are the mean and covariance ma-
trix of yR respectively. Estimated TCs are correlated with the paradigm TC after
convolving it with the blood oxygenation level dependent (BOLD) haemodynamic
response using SPM.

To evaluate the performance of each algorithm, we first remind that aver-
aging resulting components or timecourses across runs cannot be used in de-
composition tasks where the goal is interpretation of each component, and in-
stead one should opt for finding and using a most representative run to evaluate
the performance (Himberg and Hyvarinen, 2003; Rachakonda et al, 2007). On
all but relatively small datasets, performing IVA on a large number of runs is
computationally prohibitive—especially for IVA-CMGGD. Therefore, we require
a computationally-efficient method to adjudicate a relatively small sample of runs
in search of its most representative or central member—in some meaningful sense.
ICASSO, a multiple-run consistency and visualization technique, tackles this prob-
lem through evaluating the quality of clustering of corresponding SCVs from dif-
ferent runs (Himberg and Hyvarinen, 2003). However, the resulting centroids fail
to represent expected outcomes since they do not correspond to sources produced
by a single run (Ma et al, 2013). In addition, ICASSO may be sensitive to outliers,
especially when the number of runs is not large, and is computationally complex.
Recently, a minimum-spanning tree (MST) approach has been developed for ICA
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Motor TC Correlation
IVA-CMGGD 0.9205
IVA-GL 0.9079
IVA-G 0.9025

Table 1 Central run motor component TC correlation with paradigm

analyses with the goal of finding a central run from a number of independent ones
while constraining the solution space to actual runs (Du et al, 2014b, 2016, 2014a).
Given a collection of sources from multiple runs, this is performed by selecting the
run with sources that are a minimum distance to sources from all other runs as
measured by 1−ρpearson, where ρpearson is the Pearson correlation coefficient. Ex-
tending this approach to multivariate IVA sources can be performed by rotating
the estimated sources in a consistent manner since the scale ambiguity of complex
IVA leads to a misalignment in phase (Rodriguez et al, 2012). However, this ap-
proach becomes computationally expensive as the dimensionality of the dataset
K, the number of sources N , and the number of samples V increase. In (Long
et al, 2018), with the same objective of finding the most representative run from
many, the authors take advantage of cross-ISI, defined to be the ISI where the
true mixing matrix is replaced by the inverse of the estimated demixing matrix for

the same dataset from another run in ICA. To illustrate, let W
[k]
(r1), W

[k]
(r2) be the

estimated demixing matrices for the kth dataset from runs r1 and r2 respectively.
For our case, i.e., for application to IVA, we write the cross-ISI as:

ISIcross(r1, r2) =
1

2
[ISIjoint(Gr1,r2) + ISIjoint(Gr2,r1)] , (25)

where Gri,rj =
{
W

[k]
(ri)

W
−[k]
(rj)

}K
k=1

to allow cross-ISI to be symmetric. Thus, cross-

ISI, as defined in (25), is a symmetrical generalization of joint-ISI where the true
mixing matrices for each dataset and each run are substituted with the corre-
sponding inverses of demixing matrices of the same datasets, but from different
runs. Finally, we compute for each run the average cross-ISI by:

ISIricross =
1

R− 1

R∑
j=1
j 6=i

ISIcross(ri, rj), (26)

where the quantity ISIricross measures the average deviation of run ri from all other
runs and represents the cost of selecting run ri as the central run. Thus, the central
run can be found through:

rcentral = arg min
ri

ISIricross, (27)

where, in this paper, we perform 10 independent, randomly-initialized runs for
each method. Figs. 5, 6, and 7 show three sample components from the central
runs of each of the methods: the motor component, the sensorimotor component,
and the default mode network (DMN) respectively. These components all show
the desired compact, focal activated region estimation with little noise. Each of
these images is averaged over all subjects, after accounting for phase ambiguity,
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Central run average motor component

0

11

Fig. 5 Central run average motor component across all subjects: IVA-GL (top), IVA-G (mid-
dle), and IVA-CMGGD (bottom) thresholded at 1.96

Central run average sensory-motor component

0

11

Fig. 6 Central run average sensorimotor component across all subjects: IVA-GL (top), IVA-G
(middle), and IVA-CMGGD (bottom) thresholded at 1.96

and plotted using the Mahalanobis distance technique in (Rodriguez et al, 2012,
2011). To compare the central run decompositions quantitatively, we compute the
correlation of the motor component TC, which is task related, to the paradigm TC
after convolution with the SPM haemodynamic response. We present the central
run motor component TC averaged over all subjects for each method in Fig. 8 while
showing the paradigm TC for reference. Table 1 shows the correlation results. We
note that IVA-CMGGD shows superior correlation due to its adaptive parametric
density which better matches the true distributions. IVA-GL and IVA-G, with
their simpler, more rigid models, cannot exploit all of the statistical information
available. Finally, it is important to note that although the performance of the
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Central run average DMN component

0
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Fig. 7 Central run average DMN component across all subjects: IVA-GL (top), IVA-G (mid-
dle), and IVA-CMGGD (bottom) thresholded at 1.96

0 50 100 150 200

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d
e Paradigm

IVA-CMGGD

IVA-GL

IVA-G

Fig. 8 Central run estimated motor component TC averaged across all subjects

central run is not necessarily the best performing run, it is the most reproducible,
and thus best represents the average, or expected performance given a particular
set of runs. The trade-off between run-to-run variability and expected bias is an
important aspect to be considered prior to any analysis.

4 Conclusion

In this paper, we introduce IVA-CMGGD, a complex-valued, multivariate, and
data-driven method for latent variable analysis based on statistical independence.
By incorporating a simple, yet flexible, family of source distributions that incor-
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porates the full statistical information inherent in the data, i.e., noncircularity, we
show that it adapts to a wide variety of source models in a data-driven fashion.
We show that this allows for better separation performance when compared to
competing algorithms that impose less flexible assumptions on the analysis. We
also demonstrate the applicability of IVA-CMGGD to real-world data through a
14-subject fMRI dataset with improved central run performance over competitive
approaches.

Appendix A Derivation of Gradient

Since (15) is a real-valued function of complex variables, it suffices to compute

the gradient with respect to w
[k]∗
n using Wirtinger calculus. First, by applying the

chain rule we can write:

∂J(W)

∂w
[k]∗
n

=
∂J(W)

∂yn

∂yn

∂w
[k]∗
n

+
∂J(W)

∂y∗n

∂y∗n

∂w
[k]∗
n

. (28)

Due to (12), the first term in (28) is equal to 0 leaving only the second term. Next,
we subdivide the IVA-CMGGD cost function in (15) into two terms:

J(W) = J1(W) + J2(W), (29)

where

J1(W) =
1

2

N∑
n=1

E
{(ηn

2
yH
n
C−1
n y

n

)βn}
, (30)

and

J2(W) = −
K∑
k=1

(
log
∣∣W[k]

∣∣2) . (31)

Differentiating J1(W) yields:

∂J1(W)

∂w
[k]∗
n

=
1

2
E
{
βn
(ηn

2
yH
n
C−1
n y

n

)βn−1 (ηn
2
e>k C

−1
n y

n

)
x[k]∗

}

= E

βnη
βn
n

2βn+1

(
e>k C

−1
n y

n

)
x[k]∗(

yH
n
C−1
n y

n

)(1−βn)
 , (32)

where ek is defined as in (16) and
∂y∗

n

∂w
[k]∗
n

= x[k]∗.

In order to differentiate J2(W), we utilize a decoupling procedure (Anderson
et al, 2012a), originally established in (Li and Zhang, 2007). The purpose is to
factorize each summand in (31) into the product of two terms: one dependent on

w
[k]
n and the other independent of it. By defining W̃

[k]
n to be the (N − 1) × N

matrix containing rows of W[k] other than the nth, and by defining

ω̄[k]
n =

√∣∣∣det
(
W̃

[k]
n W̃

[k]H
n

)∣∣∣, (33)
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the decoupling procedure admits the following representation for J2(W):

J2(W) = −
K∑
k=1

log

(∣∣∣w[k]H
n h[k]∗

n

∣∣∣2 ω̄[k]2
n

)
, (34)

where h
[k]
n is a unit-length vector orthogonal to each of

{
w

[m]
n

}
m 6=k

. Then, the

gradient of J2(W) can be computed as:

∂J2(W)

∂w
[k]∗
n

=
h
[k]∗
n h

[k]>
n w

[k]
n

w
[k]H
n h

[k]∗
n h

[k]>
n w

[k]
n

=
h
[k]∗
n

h
[k]H
n w

[k]∗
n

. (35)

Summing (32) and (35) yields the result in (16).
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